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Abstract Using as case studies two early diagrams that represent mechanisms of

the cell division cycle, we aim to extend prior philosophical analyses of the roles of

diagrams in scientific reasoning, and specifically their role in biological reasoning.

The diagrams we discuss are, in practice, integral and indispensible elements of

reasoning from experimental data about the cell division cycle to mathematical

models of the cycle’s molecular mechanisms. In accordance with prior analyses, the

diagrams provide functional explanations of the cell cycle and facilitate the con-

struction of mathematical models of the cell cycle. But, extending beyond those

analyses, we show how diagrams facilitate the construction of mathematical models,

and we argue that the diagrams permit nomological explanations of the cell cycle.

We further argue that what makes diagrams integral and indispensible for expla-

nation and model construction is their nature as locality aids: they group together

information that is to be used together in a way that sentential representations do

not.
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Introductory remarks

Cells multiply through periodic cycles of division. Each division cycle has four

phases. Sufficient cell growth during G1 phase triggers S (synthetic) phase, during

which a cell synthesizes new copies of its DNA. After a short G2 phase, where the

cell grows and duplicates much of its ‘‘hardware’’ and checks that DNA replication

is complete, the cell enters M (mitotic) phase, during which the cell’s old and new

DNA separate and the cell divides to form two separate daughter cells, each with a

copy of the entire genetic material and other cellular machinery. After division, each

daughter cell occupies the G1 phase, and the cell cycle is complete.

In 1991, Tyson and Goldbeter separately published papers that proposed two

mathematical models of the cell cycle. Both models purport to explain why the cell

cycle oscillates. At the time, this phenomenon was something of a mystery, because

no obvious oscillating signal triggers the G1 phase. Tyson and Goldbeter’s models

show how cyclin-Cdc2 interactions alone suffice for this behavior, because solutions

for the differential equations in their models exhibit sustained oscillations. Our

interest in these models arises due to the role of diagrams in their construction. This

process proceeds in two stages: an initial stage, in which one constructs a diagram

using available evidence and some educated guessing; and a final stage, in which

one constructs a set of differential equations from the diagram.

Diagrams like Tyson and Goldbeter’s allow biologists to represent, archive,

exchange, integrate, and reuse knowledge about biological networks obtained

through scientific experimentation and data analysis (Le Novère et al. 2009; Saraiya

et al. 2005). Most interdisciplinary research projects in biology (and especially

systems biology) provide examples in which diagrammatic reasoning plays a central

role, not only in the communication between ‘‘modeler’’ and ‘‘experimentalist’’ but

also in the formulation and testing of hypotheses. According to Perini, ‘‘a thorough

philosophical analysis of science will have to include an understanding of how visual

representations contribute to the articulation and defense of scientific claims’’

(2005b: 283). However, the philosophical literature largely overlooks the roles of

diagrams in scientific reasoning.

Brown (1997), Perini (2005a, b), Bechtel and Abrahamsen (2005), and Goodwin

(2010) are exceptions. Brown argues that diagrams (he calls them pictures) can

facilitate the discovery of mathematical theorems and provide defeasible evidence for

their truth; but he does not provide much detail about how they can do so. Perini

(2005b) argues that diagrams are capable of supporting conclusions, and being

supported by other representations, because they can be true or false. But, like Brown,

she does not discuss how diagrams make such contributions. She also argues that the

two-dimensional nature of diagrams allows them to provide functional explanations

in an especially concise manner and, in some cases, to make that information humanly

comprehensible (Perini 2005a). Bechtel and Abrahamsen describe some advantages

diagrams offer over sentential representations (2005: 427–428). They sketch an

explanation for these advantages based upon the fact that ‘‘information that may be

only implicit in linguistic representation may be made explicit, and hence easier to

invoke in reasoning, in a diagram’’ (Bechtel and Abrahamsen 2005: 429). However,

they do not identify what it is about diagrams that gives them these features, and they
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restrict their account to mechanistic explanations (similar to what Perini calls

functional explanations).1 Finally, Goodwin argues that diagrams, and specifically

structural formulas from organic chemistry, can be the principle means for expressing

a scientific theory, and he discusses the way in which the norms for constructing and

interpreting structural formulas change through time (2010: 631–633).

Using Tyson and Goldbeter’s diagrams of the cell division cycle as case studies,

we aim to extend extant philosophical analyses of the roles of diagrams in scientific

reasoning, and specifically their role in biological reasoning. Unlike the diagrams

that Goodwin discusses, Tyson and Goldbeter’s diagrams are not endpoints of

reasoning (in the way that a scientific theory is). Instead, they are, in practice,

integral and indispensible elements of reasoning from experimental data about the

cell division cycle to mathematical models of the cycle’s molecular mechanisms.

In accordance with Brown, Perini, and Bechtel and Abrahamsen’s analyses, the

diagrams provide functional explanations of the cell division cycle and facilitate the

construction of mathematical models for that cycle.2 Extending beyond these

analyses, we offer an account of how diagrams do this: they are locality aids for

information search and retrieval, grouping together information that is to be used

together in a way that sentential representations do not. We also show how, as

locality aids, diagrams facilitate nomological explanations of the cell cycle.

Our discussion begins, in the next section, by presenting Tyson and Goldbeter’s

diagrams. We discuss the evidential basis for each diagram, as well as the kinds of

assumptions both Tyson and Goldbeter make in constructing their diagrams. Then we

argue that each diagram provides a functional explanation of the cell division cycle.

We argue that Perini’s account of why diagrams are especially well-suited to

providing these explanations is incomplete; and we offer a way to extend her account

by construing diagrams as locality aids. In the subsequent section, we explain the

reasoning process that produces mathematical models from each diagram, identifying

both the assumptions with which one constructs kinetic equations from the diagrams

and the additional assumptions required to solve these equations. In the next two

1 Mechanistic explanations ‘‘account for the behavior of a system in terms of the functions performed by

its parts and the interactions between these parts’’ by identifying the ‘‘parts and their organization,

showing how the behavior of the machine is a consequence of the parts and their organization’’ (Bechtel

and Richardson 2010: 17). Functional explanations involve ‘‘analyzing a disposition d of a [system] a into

a number of other dispositions d1 … dn, had by a or components of a such that programmed

manifestations of the di results in or amounts to a manifestation of d,’’ where a programmed manifestation

is one that ‘‘could be specified in a program or a flow chart’’ (Cummins 1975: 759). Piccinini and Craver

(forthcoming) maintain that functional explanations are incomplete mechanistic explanations by virtue of

omitting structural aspects regarding the location, shape, orientation, and organization of a system’s

components; Bechtel and Richardson, that elements of mechanistic explanations include elements of

functional ones (2010: 89–90).
2 These models are, in turn, the basis for formulating and testing hypotheses about the biological

mechanisms that regulate the cell cycle. The diagrams also can be used to summarize published data.

Through peer review, these summaries can be considered to be firmly established. However, in most cases

the models involve uncertainty, so that the diagrams can be considered to be encodings of hypotheses. In

such cases, the mathematical models also encode hypotheses, and computational simulation experiments

with the model can be brought into agreement (or disagreement) with experimental data in order to

validate the hypotheses through the diagram, in combination with mathematical modeling and

computational simulation. Further discussing these issues would take us beyond the scope of this paper.
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sections, we argue that Tyson and Goldbeter’s diagrams are integral and indispens-

able elements of this reasoning process by virtue of being locality aids for information

extraction, and that being locality aids also makes the diagrams especially well-suited

for providing nomological explanations. These results further extend Perini’s

analysis, which addresses neither reasoning with diagrams nor their role in

nomological explanation; they extend Bechtel and Abrahamsen’s analysis, which

only considers the role of diagrams in mechanistic (or functional) explanations; and

they extend Brown’s analysis, which does not address how diagrams facilitate the

construction of mathematical models. They also highlight the usefulness of the notion

of a locality aid for explaining the role of diagrams in biological reasoning.

From experimental data to diagrams

Research to identify the molecular mechanisms regulating the cell division cycle

began no earlier than the 1960s, as scientists developed genetic and molecular

biological methods to study the cell’s constituents. By the early 1990s, these

investigations revealed two kinds of molecule that regulate the cell cycle, cyclins and

cyclin-dependent kinases (CDKs; see Nurse 2000: 75). Cyclins are proteins that

periodically (cyclically) change their level of concentration during the cell cycle.

These cyclins bind to CDKs, which maintain a constant concentration throughout the

cycle but vary their activity depending upon whether they are attached to cyclin

molecules. (The cyclin-dependent kinases involved in human cell division cycles are

called Cdc2, for cell division control 2, or CDK1, for cyclin-dependent kinase 1).

By 1991, molecular and genetic experiments suggested that a protein complex,

maturation (or mitosis) promoting factor (MPF), largely controls the mitotic

(M) phase of the cell division cycle. When cyclin, newly synthesized from amino

acids, combines with pre-existing Cdc2, the molecules together form the hetero-

dimer MPF. A phosphate group then attaches to the cyclin subunit of this MPF

complex, and then a different phosphate group detaches, in an autocatalytic way,

from the Cdc2 subunit. This dephosphorylation converts the MPF complex from an

inactive form to an active one. If a protein kinase does not oppose this

dephosphorylation (if, that is, the phosphate group detaches successfully without

replacement), active MPF then stimulates several processes essential for nuclear and

cellular division, following which the MPF complex dissociates into its components

and the cyclin subunit quickly degrades. When a phosphate group attaches to the

surviving Cdc2 subunit, the cycle repeats itself–unless the phosphorylation reverses

itself. (This summary condenses the discussion in Tyson 1991. See Schafer 1998

and Nurse 2000 for more comprehensive reviews.)

Tyson (1991) constructs a diagram of the cell cycle by consolidating and

simplifying the preceding experimental knowledge. (He cites at least 10 papers as

the basis for his verbal summary of the overall mitotic cycle, which has been largely

reproduced above; see 1991: 7328–7329.) His summary description ignores

phosphorylation of other proteins involved in the mitotic cycle, and it ignores the

way in which active MPF stimulates cyclin degradation. The summary also

attributes cyclin degradation entirely to dephosphorylation, even though
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then-available experimental evidence suggested that degradation also requires

conjugation with the protein ubiquitin (Tyson 1991: 7329). But, given the basis of

evidence he does not simplify away, Tyson produces Fig. 1.

The diagram in Fig. 1 represents nine distinct potential ‘‘steps’’ of the cell

division cycle. In Step 1, amino acids (aa) synthesize new cyclin. If the cyclin is

unstable, it degrades (Step 2); if it is stable, it combines with a phosphorylated Cdc2

unit (bottom right) to form a cyclin-Cdc2-P complex (Step 3). After a phosphate

group (P) combines with the cyclin subunit of this complex (bottom left), the

phosphate group on the Cdc2 subunit detaches (Step 4). (The dashed arrow

represents autocatalytic feedback of active MPF (P-cyclin-Cdc2 heterodimers) on

its own production.) If this process does not reverse itself (Step 5), the complex

becomes active MPF (top right). Active MPF dissociates into its cyclin-P and Cdc2

subunits (Step 6). The cyclin-P unit degrades into a phosphate group and amino

acids (Step 7), while the Cdc2 unit (top right) undergoes phosphorylation into Cdc2-

P (Step 8). This Cdc2-P unit (bottom right) is then available to combine with cyclin,

unless the phosphate group detaches (Step 9).

Goldbeter (1991) constructs a diagram of the cell division cycle that represents

less biochemical detail than Tyson’s. While the purpose of Tyson’s paper is to

further understand mechanistic details of cell-cycle regulation (1991: 7329), the

purpose of Goldbeter’s is

to show, by means of a simple theoretical model, how thresholds in Cdc2

kinase activation and in cyclin degradation may naturally arise as a result of

post-translational modification, and how the mitotic cascade involving cyclin

and Cdc2 kinase can oscillate as a result of both the time delays associated

with these thresholds and the triggering by Cdc2 kinase of rapid cyclin

degradation (1991: 9107).

Fig. 1 Tyson’s diagram of cell
division cycle (1991: 7238)
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Experimental evidence available at the time showed that cyclin accumulation

promotes the activation of Cdc2, and that active Cdc2 promotes cyclin degradation.

Goldbeter takes this to suggest that the oscillatory behavior of the cell division cycle

might be a result of a negative feedback loop, and he aims to confirm this possibility

by constructing a model for mitotic oscillations that includes a negative feedback

loop (1991: 9110).

Goldbeter assumes that cyclin is synthesized at a constant rate, that phosphor-

ylation inactivates Cdc2 and dephosphorylation activates it, that cyclin drives Cdc2

activation, that activated Cdc2 elicits the activation of an unknown ‘‘protease’’ that

degrades cyclin, and that cyclin can degrade spontaneously (1991: 9107–9108).

These assumptions, all of which have some degree of experimental support, together

with the conjecture that there is a negative feedback loop in the cell cycle, yield the

diagram in Fig. 2.

Cyclin synthesis occurs at rate vi, and its spontaneous degradation occurs at a rate

vd. The dashed arrow beginning at the ‘‘cyclin’’ symbol represents cyclin triggering

the transformation of inactive Cdc2 (M?) into active Cdc2 (M). This transformation

occurs at rate v1, while the reverse transformation occurs at rate v2. The dashed

arrow beginning at the ‘‘M’’ symbol represents active Cdc2 triggering the

transformation of an inactive protease (X?) into an active form (X). This occurs

at a maximum rate v3; the reverse transformation, at a maximum rate v4. Finally, the

dashed arrow beginning at the ‘‘X’’ represents the active protease degrading cyclin.

The diagram includes a negative feedback loop, because while cyclin synthesis

distally stimulates activation of X, activation of X stimulates cyclin degradation.

Diagrams as locality aids for functional explanation

In accordance with Perini’s (2005a) analysis, both Tyson and Goldbeter’s diagrams

provide functional explanations of the cell division cycle, in the sense of Cummins

(1975 see especially 760–761). Tyson’s diagram represents the relevant parts of the

Fig. 2 Goldbeter’s diagram of
cell division cycle (1991: 9108)
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cycle (amino acids, cyclin, Cdc2, phosphate groups), their organization and

interaction (combined or not, interacting or not), and their capacities (to activate,

deactivate, or combine into other parts); the numbered arrows represent the way in

which the cycle is a consequence of the organization and capacities of the parts.

Goldbeter’s diagram ignores the details by which activation and deactivation of both

M and X occur, in order to ‘‘avoid entering into the detailed description of a process

which is not yet completely clarified’’ (Goldbeter 1991: 9107) and, perhaps, in order

to develop a simple representation. For simplicity, it also ignores the combination of

cyclin and Cdc2 into a heterodimer complex, possible modifications of M,

differences among kinds of cyclin involved in activating Cdc2, and the nature of the

protease X (1991: 9108). But, despite this higher degree of abstraction, Goldbeter’s

diagram represents relevant parts of the cell division cycle (cyclin, Cdc2, an

unknown protease) and the capacities of each part (to activate or deactivate some

other part); and the arrows represent the way in which the cycle is a consequence of

the parts and their capacities.

Perini (2005a) argues that the visible form of diagrams explains why diagrams

are especially well suited to provide functional explanations. Specifically, she

argues that their two-dimensional nature allows diagrams to represent simulta-

neously both the components of a system and their relations to each other, and that

this ability of diagrams makes them well-suited for functional explanation because it

makes them more concise than their sentential counterparts. The main support for

her thesis is a diagram of the binding change mechanism for ATP production in

which ‘‘the arced shapes … refer to enzyme subunits, and contiguity relations

among the symbols for subunits refer to the relation of being in the same complex’’

(2005a: 266). The diagram’s two-dimensional nature allows it to represent

simultaneously enzyme subunits and the relations among these subunits. According

to Perini, this representational simultaneity makes diagrams more concise, because

‘‘in order to describe all the different kinds of relations involved in the model, a

series of statements would be required, or a long conjunction,’’ and ‘‘the visible

form of such a linguistic representation bears no relation to the structure of the

model’’ (2005a: 266).

Perini’s account applies nicely to Tyson’s diagram. There are symbols that

represent molecular components; their proximity to each other at the ‘‘corners’’ of

Tyson’s diagram concisely represents synchronic binding relations among those

components; and arrows between each group of component symbols represent

transformations of molecular compounds. Tyson’s diagram exhibits this kind of

representational simultaneity because it is two dimensional, and it is more concise

than its sentential counterpart because it simultaneously represents molecular

components and (both synchronic and diachronic) relations among those components.

However, Perini’s account fits less well with Goldbeter’s diagram. While

Goldbeter’s diagram represents simultaneously molecular components (with letters)

and diachronic relations among those components (with arrows), this does not make

his diagram more concise than a sentential representation of the same system. We

can construct a sentential representation such that there is a one-to-one mapping

between its constituent symbols and the symbols in Goldbeter’s diagram. First,

introduce symbols to represent molecular components and reaction rates; these can
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be the same symbols that occur in Goldbeter’s diagram contains (‘‘Cyclin,’’ ‘‘M?,’’

‘‘vi,’’ and so on). Next, introduce a series of predicate letters to represent diachronic

relations among these components. For example, ‘‘S(x,y)’’ might represent ‘‘x is

synthesized at rate y,’’ ‘‘D(x,y)’’ might represent ‘‘x degrades at rate y,’’

‘‘T(x,y,z,w)’’ might represent ‘‘x triggers the transformation of y into z at rate

w,’’ and so on. After introducing a predicate letter for each arrow in Goldbeter’s

diagram, construct the sentential representation: S(Cyclin, vi); D(Cyclin, vd);

T(Cyclin, M?, M, v1); and so on. While this sentential representation uses

abbreviations, Goldbeter’s does too. Since the abbreviated sentential representation

is not clearly longer in length than Goldbeter’s diagram, it conveys at least the same

amount of information in the same amount of space.

Because equality with respect to brevity entails equality with respect to

conciseness, the ability of Goldbeter’s diagram to represent simultaneously system

components and relations among those components does not make his diagram

more concise than its sentential counterpart. Hence, Goldbeter’s account cannot be

especially well suited to provide a functional explanation of the cell cycle because it
is more concise than its sentential counterpart. Perini’s account, therefore, offers

only a partial explanation of why diagrams are especially well suited for functional

explanation. A more complete account, which applies to both Tyson and

Goldbeter’s diagrams, involves the ability of diagrams to be locality aids.

A representation is a locality aid when it groups together information that is to be

used together, allowing users to minimize the amount of search required to extract

from the representation information required to make appropriate inferences

(see Koedinger 1992: 151–152). Koedinger gives, as an example, a high school

geometry problem (Fig. 3).

Prior to the tenth step in the solution in Fig. 3, there are nine statements that

might contribute to making a triangle congruence inference; but a triangle

congruence rule (such as the side-angle-side or side–side-side rules) requires only

three statements. There are, accordingly, 84 possible statement combinations to

Fig. 3 Geometry problem and
solution—sentential form
(Koedinger 1992: 152)
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consider when attempting to infer that triangles BCX and BDX are congruent. The

sentential solution does not group the relevant statements together; but the

diagrammatic solution does, as shown in Fig. 4.

The diagram in Fig. 4 groups together the information that appears as steps 3, 8,

and 9 in the sentential solution. This grouping minimizes the amount of search

required to find the information that would support inferring triangle congruence

with the side-angle-side rule.

Tyson and Goldbeter’s diagrams of the cell division cycle are well suited for

providing functional explanations of the cell division cycle by virtue of being

locality aids, grouping together information that is required for such explanation.

Tyson’s diagram groups together information about the molecular components of

the cell division cycle and their relations to each other, representing one molecule

binding to another by having the symbols for molecules touch each other. For

example, Tyson’s diagram represents cyclin-Cdc2 binding by having the ‘‘cyclin’’

and ‘‘Cdc2’’ symbols share a common border. Goldbeter’s diagram does not do this.

But it does group together information about the capacities of each molecule,

representing the products of these capacities with outgoing arrows. For example, the

dashed arrow from the symbol ‘‘cyclin’’ to the arrow labeled ‘‘v1’’ represents the

capacity of cyclin to transform inactive Cdc2 (M?) into active Cdc2 (M) at rate v1;

and the arrow labeled ‘‘vd,’’ departing from ‘‘cyclin’’ to the right, represents an

additional capacity of cyclin to degrade spontaneously. The diagram groups these

capacities together, because the two arrows depart from the same symbol, ‘‘cyclin.’’

A sentential representation of these capacities also could group this information

together; but the cost would be ungrouping the representations of dual capacities for

other molecules, such as the protease X. Tyson’s diagram likewise groups together

information about the multiple capacities of different molecules. Moreover,

Goldbeter’s diagram groups together information about capacities in a way that

makes apparent the role of the posited negative feedback loop; and Tyson’s diagram

groups together information about molecular capacities in a way that makes

apparent the cyclical nature of the molecular interactions.

This analysis suggests that, while Perini is correct to note that the two-

dimensional nature of diagrams allows them to represent information relevant to

functional explanations, her account of the connection between two-dimensionality

Fig. 4 Geometry problem and solution—diagrammatic form (Koedinger 1992: 153)
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and suitability for functional explanation is incomplete. Having two dimensions

allows diagrams to be locality aids in a way that their sentential counterparts are not,

even when (as in Goldbeter’s case) the diagrams are not more concise than their

sentential counterparts. For while the ability of diagrams to represent simulta-

neously system components and relations among those components sometimes
makes diagrams more concise, sometimes it allows them to be locality aids despite

not being more concise. Accordingly, the way to remedy the limitation of Perini’s

analysis is to add that diagrams are especially well suited to provide functional

explanations when they are more concise than their sentential counterparts or when
they are locality aids for functional explanation.

From diagram to mathematical model

The case that the notion of a locality aid helps to explain the role of diagrams in

biological reasoning does not rest entirely upon the argument that the sentential

counterpart to Goldbeter’s diagram is at least as concise as the diagram itself. The

notion of a locality aid also accounts for how diagrams facilitate the construction of

mathematical models and provide other, non-functional kinds of explanations. Tyson

and Goldbeter’s diagrams of cell division cycle mechanisms are the means by which

they construct mathematical models of that mechanism. These constructions follow

what Kell and Knowles refer to as a classical modeling strategy: construction of a

structural model representing system elements and reaction relations among those

elements, derivation of ordinary differential equations from the model, and

subsequent parameterization of these equations (2010: 13). Kell and Knowles do

not discuss the details of the transition from structural models (what we here refer to as

diagrams) to ordinary differential equations. We shall, accordingly, provide details

for this strategy in the case of modeling cell cycle oscillations. This extends Perini’s

(2005a) and Brown’s (2005) analyses, by showing how diagrams facilitate the

construction of mathematical models. In the subsequent sections, we use these details

to argue that, by virtue of being locality aids, diagrams are especially well-suited for

constructing mathematical models and providing non-functional explanations.

Tyson and Goldbeter’s constructions of mathematical equations from their

diagrams, and the subsequent biophysical interpretation of the terms in those

equations, rely upon mass action kinetics. Specifically, Tyson and Goldbeter apply a

(phenomenological) mass-action rate law to the reaction relations represented in

their diagrams. These rate laws determine kinetic equations for the changes in

concentrations of various biochemical species with respect to time. For example,

according to the law of mass action, ‘‘the rate of any given elementary reaction is

proportional to the concentrations of the species reacting in the elementary process

(reactants)’’ (Crampin et al. 2004: 80). For the elementary reaction in which A

irreversibly transforms into B with velocity v:

A�!v B,

the law of mass action entails that the rate of change of the concentration of B is

proportional to the concentration of B. The proportionality constant (or rate
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constant) for such a reaction is normalized by the reaction’s stoichiometry

(the difference between the amount of the species present after the reaction and the

amount of the same species present before the reaction). While the proportionality

constant depends upon environmental conditions such as the temperature at which

the reaction occurs, applications of mass-action rate laws typically assume that these

conditions are invariant (Crampin et al. 2004: 81; Millat et al. 2007: 43).

We mention the law of mass action only to illustrate the idea of a mass-action

rate law. The reactions that appear in Tyson and Goldbeter’s diagrams are more

complex than our toy example, by virtue of being composed of several elementary

reactions. A more general mass-action rate law, based upon the idea that

biochemical reactions are decomposable into smaller independent steps, applies

to more complex reactions, according to which ‘‘the rate of change of the

concentration of any given species is … a sum of the rates of change due to the

elementary reactions in which that species participates’’ (Crampin et al. 2004: 81;

for a more sophisticated generalization, see Heinrich and Schuster 1996: 14–16).

Tyson uses such a generalized mass-action rate law (hereafter MARL) to construct

several kinetic equations from his diagram of the cell cycle mechanism (see Sible

and Tyson 2007: 240). For example, the top right corner of his diagram (Fig. 1)

indicates that Cdc2 participates in three elementary reactions:

Step 6 : P-cyclin-Cdc2�!k6
Cdc2

Step 8 : Pþ Cdc2�!k8
Cdc2-P

Step 9 : Cdc2-P�!k9
Cdc2:

The stoichiometry for Step 6 and Step 9 is (1–0) = 1; for Step 8, it is (0–1) = -1.

Applying a generalized MARL to these elementary reaction relations, it follows that

the overall change in Cdc2 concentration with respect to time is

d[Cdc2]=dt ¼ k6½P-cyclin-Cdc2]� k8½P�½Cdc2� þ k9½Cdc2-P�;

where a species name in square brackets represents the concentration of that species

and ki is the proportionality constant for the ith elementary reaction step. This is

precisely the equation that Tyson constructs, and a similar procedure yields all but

two of his equations (see Tyson 1991: 7329, Table 1). (For thoroughness, we note

that, at Step 3, Tyson assumes that intermediate reactions in which a phosphate

group attaches to a cyclin operate at quasi-steady states. This allows him to ignore

these reactions. We shall discuss the quasi-steady-state approximation in connection

with Goldbeter’s constructions.)

The kinetic equations for which Tyson departs from this relatively straightfor-

ward procedure concern rate changes in the concentrations of P-cyclin-Cdc2-P and

P-cyclin-Cdc2. For example, the lower left corner of Tyson’s diagram (Fig. 1)

indicates that P-cyclin-Cdc2-P participates in three elementary reactions:

Step 3 : Cdc2-Pþ cyclin�!k3
P-cyclin-Cdc2-P

Step 4a : P-cyclin-Cdc2-P�!k40
P-cyclin-Cdc2
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Step 4b : P-cyclin-Cdc2�!k4
P-cyclin-Cdc2-P

Step 5 : Pþ P-cyclin-Cdc2�!k5
P-cyclin-Cdc2-P:

The autocatalytic reaction in Step 4 consists of a forward reaction with rate constant

k40 when there is no active MPF (P-cyclin-Cdc2) and a reverse reaction (the auto-

catalytic feedback loop) with rate constant k4 when the total concentration of active

MPF is equal to the total concentration of Cdc2. (A conservation law determines the

value of the total Cdc2 concentration.) According to mass action kinetics, the rate of

the entire autocatalytic reaction in Step 4 is

F ¼ k40 þ k4ð½P-cyclin-Cdc2�=½total Cdc2�Þ2:

Given this caveat, a generalized MARL entails that

d[P-cyclin-Cdc2-P]=dt ¼ k3½Cdc2-P�½cyclin� � F[P-cyclin-Cdc2-P]

þ k5½P�½P-cyclin-Cdc2�:

A similar procedure reproduces Tyson’s equation for d[P-cyclin-Cdc2]/dt.

Numerically solving Tyson’s equations requires assigning values to the rate

constants and the initial concentrations of each biochemical species. Tyson

simplifies this task in four ways. First, he assumes that the concentrations of amino

acids and phosphate are constant, thereby reducing his set of kinetic equations from

nine to seven. Second, he assumes that the total concentration of Cdc2 is constant

and equal to the combined concentrations of Cdc2, Cdc2-P, P-cyclin-Cdc2-P, and

P-cyclin-Cdc2, thereby further reducing his set of equations by one. Third, Tyson

assumes that newly synthesized cyclin is stable, so that k2 = 0, and he ignores

rephosphorylation of the Cdc2 subunit of active MPF in Step 5, so that k5 = 0. He

notes, however, that his solutions are fairly robust when these parameters have

nonzero values. Finally, he assumes that Cdc2 is phorphorylated immediately after

it dissociates from P-cyclin-Cdc2, so that k8[P] is much greater than k9, which in

turn is much greater than k6. This entails that d[Cdc2]/dt is approximately equal to

-k8[P][Cdc2]; Tyson takes it to warrant treating the Cdc2 concentration as constant.

Tyson further assumes that k4 is much greater than k40, presumably because it is

natural to treat the rate at which active MPF stimulates its own production as much

faster than the rate at which active MPF is produced initially. He then assigns values

to the other rate constants and, in the case of k6, considers a case in which the value

of the ‘‘constant’’ varies in time. (As noted, rate constants generally are not constant,

depending as they do upon environmental conditions.) This parameterization is

largely speculative due to lack of experimental data (Tyson 1991: 7329).

Accordingly, while the solutions to Tyson’s parameterized equations exhibit

oscillatory behavior, the uncertainty of the parameterization translates into Tyson

characterizing his mathematical model as merely a possible explanation of how the

cell cycle mechanism generates oscillations.

Like Tyson, Goldbeter constructs a set of kinetic equations from his diagram

using a (phenomenological) mass-action rate law. However, Goldbeter’s diagram of

the cell cycle mechanism is less firmly grounded in biochemical evidence than
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Tyson’s, and Goldbeter explains the cell cycle’s oscillatory behavior as caused by

negative feedback rather than auocatalytic processes (Goldbeter 1991: 9111). The

basis for his explanation is Michaelis–Menten kinetics. These kinetics apply to

reactions in which a protein substrate S and enzyme E reversibly combine into an

enzyme-substrate complex C, which then irreversibly creates a modified form of the

original protein, S*, and the original enzyme E:

Sþ E� C�!k2
Eþ S�;

where the forward reaction from S ? E to C occurs at rate k1 and the reverse

reaction from C to S ? E occurs at rate k-1. Assuming that the total enzyme

concentration [ET] = [E] ? [C] is constant (conservation law) and that the inter-

mediate complex forms and dissociates back into its components is much faster than

it converts into its products (quasi-steady-state approximation), a generalized

MARL entails that the rate at which the concentration of the modified protein S*

changes is

d[S��=dt ¼ k2½ET�½S�=ðkM þ ½S�Þ;

where the Michaelis constant kM is defined as (k-1?k2)/k1. This rate law is known

as the Michaelis–Menten equation; it is valid when either kM is very large or the

substrate concentration is much greater than the enzyme concentration. (For a fuller

discussion of the validity conditions for the Michaelis–Menten equation and the

relation between this equation and a generalized MARL, see Millat et al. 2007:

41–44.) When the intermediate complex concentration in a reversible Michaelis–

Menten reaction is negative compared to the concentration of the protein in forms S

and S*, similar assumptions entail that the rate at which the concentration of

S* changes is a sum of two Michaelis–Menten-like rates, where one rate charac-

terizes the change in the concentration of S* in the forward reaction and the other

characterizes the change in the concentration of S* in the reverse reaction (see

Heinrich and Schuster 1996: 17–18).

Goldbeter uses a generalized MARL, together with some simplifying auxiliary

assumptions, to construct three kinetic equations from his diagram of the cell cycle

mechanism. The most important auxiliary assumptions, which allow him to apply

the Michaelis–Menten equation, are the quasi-steady-state approximation and two

conservation assumptions to the effect that the total concentrations of the kinase M

and the protease X (in their active and inactive forms) remain constant. Goldbeter

makes several further assumptions as well. But rather than explicate his reasoning in

its entirely, we offer a partial reconstruction of one equation in order to highlight to

role of Goldbeter’s diagram in the construction process.

The solid arrows at the bottom of Goldbeter’s diagram (Fig. 2) indicate that the

active (X) form of the protease participates in two elementary reactions. Goldbeter’s

diagram does not explicitly represent these reactions as Michaelis–Menten type, nor

does it indicate the enzymes involved in the reactions; but his subsequent

discussion, and accepted convention, support constructing these reaction relations as

follows:
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Forward reaction : Xþ þ E3 � C3�!
kF

E3 þ X

Reverse reaction : Xþ E4 � C4�!
kR

E4 þ Xþ:

(The solid arrow departing from the symbol ‘‘X’’ indicates that X promotes cyclin

degradation.) Applying the Michaelis–Menten equation to these reaction relations

entails that the overall rate of change in the concentration of the active protease X is

d[X]=dt ¼ kF ET
3

� �
Xþ½ �=ðKMF þ ½Xþ�Þ � kR ET

4

� �
X½ �=ðKMR þ ½X�Þ;

where KMF and KMR are, respectively, the Michaelis constants for the Forward

Reaction and the Reverse Reaction. Goldbeter assumes that [E3
T] is proportional to

[M], which entails that kF[E3
T] = kF0[E3

T][M]. A few further manipulations yield the

precise equation Goldbeter constructs, and similar procedures yield his other two

equations (see Goldbeter 1991: 9108).

Like Tyson, Goldbeter parameterizes his mathematical model in order to show

that solutions to his equations exhibit oscillatory behavior. This involves some

degree of speculation. But it does not interfere with his stated goal. Goldbeter is

very careful to claim that his model demonstrates that a negative feedback loop is a

potential cause of the cell cycle’s oscillations: in Goldbeter’s words, ‘‘[the model’s]

analysis highlights the conditions in which the cyclin-cdc2 kinase system can

operate as a continuous autonomous oscillator’’ (1991: 9107). Goldbeter achieves

this goal, because solutions to his parameterized equations exhibit oscillatory

behavior without oscillating input (since his model assumes a constant rate of cyclin

production). And it does so by virtue of applying a generalized mass-action rate law

to the reaction relations constructed from his diagram.

Diagrams as locality aids for model construction

Both Tyson and Goldbeter use diagrams of potential cell cycle mechanisms to

construct a set of kinetic equations for those mechanisms. The diagrams are integral

to these constructions, because they are locality aids. The diagrams group together,

in an especially efficient way, information about reaction relations between

components of the proposed cell cycle mechanisms; and this grouping minimizes

the amount of search required to extract information relevant to the construction of

mathematical models.

There are two reasons to suppose that Tyson and Goldbeter’s diagrams are

locality aids for constructing mathematical models of the cell division cycle. First,

they group together information from a variety of publications that report

experimental data about the cell division cycle. For example, Tyson cites Nurse

(1990) as part of his diagram’s experimental basis. That paper reports that activation

of MPF determines whether the cell enters M phase, and that this activation requires

dephosphorylation of Cdc2-P and association with cyclin. Tyson’s diagram

synthesizes many such reports, ignoring much of their content and representing

only those biochemical details (in the form of nine reaction relations) that suffice for
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a ‘‘first approximation’’ of the overall mechanism. Specifically, Tyson constructs his

diagram from six sources (1991: 7329); but by 1991 there are orders of magnitude

more papers reporting experimental results related to the cell division cycle.

Goldbeter’s diagram similarly consolidates experimental data from many

publications.

Second, Tyson and Goldbeter’s diagrams group together information about the

cell cycle in a way that makes minimizes the amount of search required to extract

that information for model construction. For example, Tyson’s diagram makes

evident that calculating the rate of change for the concentration of P-cyclin-Cdc2-P

requires taking into account exactly three reaction relations, because the diagram

shows that there are exactly three arrows associated with the P-cyclin-Cdc2-P icon.

The diagram also makes evident what those relations are. Tyson’s sentential

description of his diagram’s content, in contrast, requires searching through multiple

lines of text to find the number and nature of the relevant reactions. Tyson’s diagram

facilitates the construction of nine reaction relations from experimental data; and

while the sentential description of the diagram’s content facilitates the same

construction process, that process likely would require more significant indirect

processing, in the form of searching through multiple lines of text, were the diagram

absent.

Diagrams as locality aids for nomological explanation

In addition to making Tyson and Goldbeter’s diagrams especially well-suited for

constructing mathematical models, being locality aids for information extraction

makes their diagrams especially well-suited for nomological explanation. Following

Hempel (1965), a nomological explanation of a phenomenon is a derivation of that

phenomenon from law statements and auxiliary assumptions. Tyson and Goldbeter

both deduce equations that exhibit oscillatory behavior, which is the phenomenon

they seek to explain. These deductions begin with the construction of reaction

relations from their respective diagrams. From these relations, Tyson and Goldbeter

derive a set of differential equations using a (phenomenological) mass-action rate

law and auxiliary assumptions. After making further assumptions that parameterize

these equations, Tyson and Goldbeter deduce solutions to their equations that exhibit

oscillatory behavior. By subsuming this behavior under laws in such a manner, they

provide nomological explanations of why the cell division cycle oscillates.

The mass-action rate laws are essential ingredients for Tyson and Goldbeter’s

nomological explanations of oscillation of the cell division cycle. So, too, are the

reaction relations. Tyson and Goldbeter construct these relations from their

respective diagrams. While, in principle, they could construct the relations entirely

from sentential representations of the cell division cycle, in practice the diagrams

are integral components of their construction (see also Sible and Tyson 2007:

239–240). The diagrams facilitate the constructions by grouping together informa-

tion about the cell cycle in a way that minimizes the amount of search required to

extract information relevant to constructing the reaction relations and deriving

reaction rate equations. For this reason, being locality aids for constructing
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mathematical models of the cell cycle makes the diagrams especially well-suited to

providing material for nomological explanations of why the cell division cycle

oscillates.

Concluding remarks

Brown argues that diagrams are integral elements of reasoning in mathematics

because they ‘‘provide the known to be true consequences that we use for testing’’

hypotheses (1997: 165). According to Brown, diagrams enlarge our pool of intuitive

truths and thereby provide a kind of inductive evidence for the truth of mathematical

theorems (1997: 167–169, 177). Tyson and Goldbeter’s diagrams are not like this.

While they are syntheses of available experimental data, they are not therefore

evidence that can be used to confirm or refute mathematical models.3 This is, in

part, because they can contain conjectures not warranted by available evidence

(as in Goldbeter’s case), and in part because their use involves a tacit assumption

that no other factors are present. Our sources of evidence regarding mathematical

models of biological phenomena are the phenomena themselves rather than

diagrams that purport to represent those phenomena.

Despite this difference between mathematical and biological diagrams, diagrams

are integral elements of reasoning in biology. For they facilitate the construction of

mathematical models of biological phenomena, and they are especially well suited

for representing information relevant to functional and nomological explanations.

The aim of this paper has been to exhibit how diagrams in biology fulfill these roles,

and to offer an explanation of why diagrams are integral and indispensable tools in

fulfilling these roles despite the availability of sentential representations with

equivalent content.

We agree with Perini that diagrams are superior to sentential representations

because they represent simultaneously both components of a system and their

relations to each other. Perini accounts for this superiority in terms of conciseness.

But Goldbeter’s diagram of the cell division cycle gives some reason to suppose that

diagrams are superior even when they are not more concise. Identifying diagrams as

locality aids overcomes this (potential) limitation of Perini’s analysis. While any

diagram that is a locality aid simultaneously represents both components of a system

and their relations to each other, not all diagrams that simultaneously represent in

this way are more concise than their sentential counterparts. Goldbeter’s diagram is

a case in point.

The notion of a locality aid explains how, as Bechtel and Abrahamsen note,

diagrams can make explicit information that remains implicit in sentential

representations. By grouping together information that is to be used together,

diagrams make explicit relationships the identification of which would require

extended search within sentential representations. The extended discussion of how

one constructs mathematical models from Tyson and Goldbeter’s diagrams not only

illustrates this but also exhibits the role of diagrams in reasoning and nomological

3 But see our previous footnote.
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explanation within cell biology. Finally, the fact that being a locality aid is, in a

sense, a product of the ability to represent simultaneously both system components

and relations among those components helps to explain why the visual format of

diagrams makes them especially well suited for providing functional explanations.

Acknowledgments We thank Laura Perini, Thomas Millat, Anuradha Chauhan, and Justin Barnard for

helpful comments on earlier versions of this paper.

References

Bechtel W, Abrahamsen A (2005) Explanation: a mechanistic alternative. Stud History Philos Biol

Biomed Sci 36:421–441

Bechtel W, Richardson RC (2010) Discovering complexity: decomposition and localization as strategies

in scientific research. The MIT Press, Cambridge, MA

Brown JR (1997) Proofs and pictures. Br J Philos Sci 48:161–180

Crampin EJ, Schnell S, McCharry PE (2004) Mathematical and computational techniques to deduce

complex biochemical reaction mechanisms. Prog Biophys Mol Biol 86:77–112

Cummins R (1975) Functional analysis. J Philos 72:741–765

Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and Cdc2 kinase.

Proc Natl Acad Sci 88:9107–9111

Goodwin W (2010) How do structural formulas embody the theory of organic chemistry? Br J Philos Sci

61:621–633

Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman & Hall, New York

Hempel CG (1965) Aspects of scientific explanation and other essays in the philosophy of science. Free

Press, New York

Kell DB, Knowles J (2010) The role of modelling in systems biology. In: Szallasi Z, Stelling J, Periwal V

(eds) System modeling in cellular biology: from concepts to nuts and bolts. MIT Press, Cambridge,

MA, pp 3–18

Koedinger KR (1992) Emergent properties and structural constraints: advantages of diagrammatic

representations for reasoning and learning. AAAI technical report SS-92-02, pp 151–156

Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI,

Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd
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